逼真的触觉需要高保真的身体建模和忠实的驾驶才能使动态合成的外观与现实无法区分。在这项工作中,我们提出了一个端到端框架,该框架解决了建模和推动真实人的全身化身方面的两个核心挑战。一个挑战是驾驶头像,同时忠实地遵守细节和动态,而这些细节和动态无法被全球低维参数化(例如身体姿势)所捕捉。我们的方法支持驾驶穿着皱纹和运动的衣服化身,而真正的驾驶表演者展出了训练语料库。与现有的全局状态表示或非参数屏幕空间方法不同,我们介绍了Texel对准功能 - 一种本地化表示,可以利用基于骨架的参数模型的结构先验和同时观察到的稀疏图像信号。另一个挑战是建模临时连贯的衣服头像,通常需要精确的表面跟踪。为了避免这种情况,我们通过将体积原语的混合物扩展到清晰的物体,提出了一种新型的体积化头像表示。通过明确合并表达,我们的方法自然而然地概括了看不见的姿势。我们还介绍了局部视点条件,从而导致了依赖视图的外观的概括。拟议的体积表示不需要高质量的网格跟踪作为先决条件,并且与基于网格的对应物相比,具有显着的质量改进。在我们的实验中,我们仔细研究了我们的设计选择,并证明了方法的功效,超过了最新方法在挑战驾驶方案方面的最新方法。
translated by 谷歌翻译
尽管最近在开发动画全身化身方面取得了进展,但服装的现实建模(人类自我表达的核心方面之一)仍然是一个开放的挑战。最先进的物理模拟方法可以以交互速度产生现实行为的服装几何形状。但是,建模光真逼真的外观通常需要基于物理的渲染,这对于交互式应用来说太昂贵了。另一方面,数据驱动的深度外观模型能够有效地产生逼真的外观,但在合成高度动态服装的几何形状和处理具有挑战性的身体套构型方面挣扎。为此,我们通过对服装的明确建模介绍了姿势驱动的化身,这些化身表现出逼真的服装动力学和从现实世界数据中学到的逼真的外观。关键的想法是引入一个在显式几何形状之上运行的神经服装外观模型:在火车时,我们使用高保真跟踪,而在动画时期,我们依靠物理模拟的几何形状。我们的关键贡献是一个具有物理启发的外观网络,能够生成具有视图依赖性和动态阴影效果的影像逼真的外观,即使对于看不见的身体透明构型也是如此。我们对我们的模型进行了彻底的评估,并在几种受试者和不同类型的衣服上展示了不同的动画结果。与以前关于影迷全身化身的工作不同,我们的方法甚至可以为宽松的衣服产生更丰富的动力和更现实的变形。我们还证明,我们的配方自然允许服装与不同人的头像一起使用,同时保持完全动画,因此首次可以采用新颖的衣服来实现逼真的化身。
translated by 谷歌翻译
虚拟网格是在线通信的未来。服装是一个人身份和自我表达的重要组成部分。然而,目前,在培训逼真的布置动画的远程介绍模型的必需分子和准确性中,目前无法使用注册衣服的地面真相数据。在这里,我们提出了一条端到端的管道,用于建造可驱动的服装代表。我们方法的核心是一种多视图图案的布跟踪算法,能够以高精度捕获变形。我们进一步依靠跟踪方法生产的高质量数据来构建服装头像:一件衣服的表达和完全驱动的几何模型。可以使用一组稀疏的视图来对所得模型进行动画,并产生高度逼真的重建,这些重建忠于驾驶信号。我们证明了管道对现实的虚拟电视应用程序的功效,在该应用程序中,从两种视图中重建了衣服,并且用户可以根据自己的意愿进行选择和交换服装设计。此外,当仅通过身体姿势驱动时,我们表现出一个具有挑战性的场景,我们可驾驶的服装Avatar能够生产出比最先进的面包质量明显更高的逼真的布几何形状。
translated by 谷歌翻译
可解释的AI(XAI)的最新进展增加了对各个行业中安全和可解释的AI模型部署的需求。尽管深度神经网络在各种领域取得了最新的成功,但了解这种复杂模型的决策过程对于领域专家来说仍然是一项艰巨的任务。尤其是在金融领域,仅指向通常由数百种混合类型列组成的异常,对专家的价值有限。因此,在本文中,我们提出了一个框架,用于解释使用用于混合类型表格数据的Denoisising自动编码器。我们专门将技术集中在错误的观察方面上。这是通过将潜在误差定位的单个样品柱(单元)定位并分配相应的置信度得分来实现的。此外,该模型提供了预期的单元格估计来解决错误。我们根据三个标准的公共表格数据集(信用默认,成人,IEEE欺诈)和一个专有数据集(Holdings)来评估我们的方法。我们发现,适用于此任务的Denoing自动编码器已经在细胞误差检测率和预期价值率中的其他方法都优于其他方法。此外,我们分析了设计用于细胞误差检测的专门损失如何进一步改善这些指标。我们的框架是为域专家设计的,以了解异常的异常特征,并改善内部数据质量管理流程。
translated by 谷歌翻译
检测会计异常是财务报表审核中的反复挑战。最近,已经提出了源自深度学习(DL)的新方法来审核声明的基本会计记录的大量。但是,由于它们的大量参数,这种模型表现出固有不透明的缺点。同时,隐藏模型的内部运作通常会阻碍其现实世界的应用。该观察结果在财务审计中尤其如此,因为审计师必须合理地解释和证明其审计决定是合理的。如今,已经提出了各种可解释的AI(XAI)技术来应对这一挑战,例如Shapley添加说明(Shap)。但是,在经常在财务审核中应用的无监督DL中,这些方法在编码变量级别上解释了模型输出。结果,人类审计师通常很难理解自动编码器神经网络(AENNS)的解释。为了减轻此缺点,我们提出(重塑),该属性在汇总属性级别上解释了模型输出。此外,我们引入了一个评估框架,以比较XAI方法在审计中的多功能性。我们的实验结果表明,经验证据表明,与最先进的基线相比,重塑结果是多功能解释的。我们将这种属性级别的解释视为在财务审计中采用无监督的DL技术的必要下一步。
translated by 谷歌翻译
正在进行的“数字化转型”从根本上改变了审计证据的性质,记录和数量。如今,国际审计标准(ISA)要求审计师检查财务报表的大量基础数字会计记录。结果,审计公司还“数字化”了他们的分析能力并投资深度学习(DL),这是机器学习的成功子学科。 DL的应用提供了从多个客户(例如在同一行业或管辖权中运营的组织)学习专业审计模型的能力。通常,法规要求审核员遵守严格的数据机密性措施。同时,最近有趣的发现表明,大规模的DL模型容易受到泄漏敏感培训数据信息的影响。如今,尚不清楚审计公司在遵守数据保护法规的同时如何应用DL模型。在这项工作中,我们提出了一个联合学习框架,以培训DL模型,以审核多个客户的相关会计数据。该框架涵盖了差异隐私和拆分学习能力,以减轻模型推断中的数据机密性风险。我们评估了在三个现实世界中付款数据集中检测会计异常的方法。我们的结果提供了经验证据,表明审计师可以从DL模型中受益,这些模型从专有客户数据的多个来源积累知识。
translated by 谷歌翻译
本文介绍了STC有限公司的描述,该系统提交给NIST 2021扬声器识别评估,用于固定和开放的培训条件。这些系统由许多不同的子系统组成,基于使用深神经网络作为特征提取器。在NIST 2021 SRE挑战期间,我们专注于培训最先进的深部扬声器嵌入式提取器,如Contive角度裕度的损耗功能。此外,通过自动语音识别中的Wav2Vec 2.0特征的最近成功的启发,我们探讨了这种方法对提交的扬声器验证的有效性。根据我们的观察,预先训练的大wave2vec 2.0模型的微调为开放式条件提供了最佳的开展系统。我们对固定条件的WAV2VEC 2.0提取器的实验表明,与对比预测编码损失的无监督自回归预测将打开从原始语音信号训练强大的变压器的提取器。对于视频模型,我们通过RetinaFace面部探测器和深签名脸部嵌入式提取器开发了我们的最佳解决方案,培训了大面孔图像数据集。主要系统的最终结果是通过在分数水平上的不同配置融合的不同配置而获得,然后进行评分校准。
translated by 谷歌翻译
We propose SWA-Gaussian (SWAG), a simple, scalable, and general purpose approach for uncertainty representation and calibration in deep learning. Stochastic Weight Averaging (SWA), which computes the first moment of stochastic gradient descent (SGD) iterates with a modified learning rate schedule, has recently been shown to improve generalization in deep learning. With SWAG, we fit a Gaussian using the SWA solution as the first moment and a low rank plus diagonal covariance also derived from the SGD iterates, forming an approximate posterior distribution over neural network weights; we then sample from this Gaussian distribution to perform Bayesian model averaging. We empirically find that SWAG approximates the shape of the true posterior, in accordance with results describing the stationary distribution of SGD iterates. Moreover, we demonstrate that SWAG performs well on a wide variety of tasks, including out of sample detection, calibration, and transfer learning, in comparison to many popular alternatives including MC dropout, KFAC Laplace, SGLD, and temperature scaling.
translated by 谷歌翻译
Deep neural networks are typically trained by optimizing a loss function with an SGD variant, in conjunction with a decaying learning rate, until convergence. We show that simple averaging of multiple points along the trajectory of SGD, with a cyclical or constant learning rate, leads to better generalization than conventional training. We also show that this Stochastic Weight Averaging (SWA) procedure finds much flatter solutions than SGD, and approximates the recent Fast Geometric Ensembling (FGE) approach with a single model. Using SWA we achieve notable improvement in test accuracy over conventional SGD training on a range of state-of-the-art residual networks, PyramidNets, DenseNets, and Shake-Shake networks on CIFAR-10, CIFAR-100, and ImageNet. In short, SWA is extremely easy to implement, improves generalization, and has almost no computational overhead.
translated by 谷歌翻译
The loss functions of deep neural networks are complex and their geometric properties are not well understood. We show that the optima of these complex loss functions are in fact connected by simple curves over which training and test accuracy are nearly constant. We introduce a training procedure to discover these high-accuracy pathways between modes. Inspired by this new geometric insight, we also propose a new ensembling method entitled Fast Geometric Ensembling (FGE). Using FGE we can train high-performing ensembles in the time required to train a single model. We achieve improved performance compared to the recent state-of-the-art Snapshot Ensembles, on CIFAR-10, CIFAR-100, and ImageNet. * Equal contribution. 1 Suppose we have three weight vectors w1, w2, w3. We set u = (w2 − w1), v = (w3 − w1) − w3 − w1, w2 − w1 / w2 − w1 2 • (w2 − w1). Then the normalized vectors û = u/ u , v = v/ v form an orthonormal basis in the plane containing w1, w2, w3. To visualize the loss in this plane, we define a Cartesian grid in the basis û, v and evaluate the networks corresponding to each of the points in the grid. A point P with coordinates (x, y) in the plane would then be given by P = w1 + x • û + y • v.
translated by 谷歌翻译